27 research outputs found

    An orifice shape-based reduced order model of patient-specific mitral valve regurgitation

    Get PDF
    Mitral valve regurgitation (MR) is one of the most prevalent valvular heart diseases. Its quantitative assessment is challenging but crucial for treatment decisions. Using computational fluid dynamics (CFD), we developed a reduced order model (ROM) describing the relationship between MR flow rates, transvalvular pressure differences, and the size and shape of the regurgitant valve orifice. Due to its low computational cost, this ROM could easily be implemented into clinical workflows to support the assessment of MR. We reconstructed mitral valves of 43 patients from 3D transesophageal echocardiographic images and estimated the 3D anatomic regurgitant orifice areas using a shrink-wrap algorithm. The orifice shapes were quantified with three dimensionless shape parameters. Steady-state CFD simulations in the reconstructed mitral valves were performed to analyse the relationship between the regurgitant orifice geometry and the regurgitant hemodynamics. Based on the results, three ROMs with increasing complexity were defined, all of which revealed very good agreement with CFD results with a mean bias below 3% for the MR flow rate. Classifying orifices into two shape groups and assigning group-specific flow coefficients in the ROM reduced the limit of agreement predicting regurgitant volumes from 9.0 ml to 5.7 ml at a mean regurgitant volume of 57 ml

    Contrasting Linguistic and Genetic Origins of the Asian Source Populations of Malagasy

    Get PDF
    The Austronesian expansion, one of the last major human migrations, influenced regions as distant as tropical Asia, Remote Oceania and Madagascar, off the east coast of Africa. The identity of the Asian groups that settled Madagascar is particularly mysterious. While language connects Madagascar to the Ma'anyan of southern Borneo, haploid genetic data are more ambiguous. Here, we screened genome-wide diversity in 211 individuals from the Ma'anyan and surrounding groups in southern Borneo. Surprisingly, the Ma'anyan are characterized by a distinct, high frequency genomic component that is not found in Malagasy. This novel genetic layer occurs at low levels across Island Southeast Asia and hints at a more complex model for the Austronesian expansion in this region. In contrast, Malagasy show genomic links to a range of Island Southeast Asian groups, particularly from southern Borneo, but do not have a clear genetic connection with the Ma'anyan despite the obvious linguistic association

    An orifice shape-based reduced order model of patient-specific mitral valve regurgitation

    Get PDF
    Mitral valve regurgitation (MR) is one of the most prevalent valvular heart diseases. Its quantitative assessment is challenging but crucial for treatment decisions. Using computational fluid dynamics (CFD), we developed a reduced order model (ROM) describing the relationship between MR flow rates, transvalvular pressure differences, and the size and shape of the regurgitant valve orifice. Due to its low computational cost, this ROM could easily be implemented into clinical workflows to support the assessment of MR. We reconstructed mitral valves of 43 patients from 3D transesophageal echocardiographic images and estimated the 3D anatomic regurgitant orifice areas using a shrink-wrap algorithm. The orifice shapes were quantified with three dimensionless shape parameters. Steady-state CFD simulations in the reconstructed mitral valves were performed to analyse the relationship between the regurgitant orifice geometry and the regurgitant hemodynamics. Based on the results, three ROMs with increasing complexity were defined, all of which revealed very good agreement with CFD results with a mean bias below 3% for the MR flow rate. Classifying orifices into two shape groups and assigning group-specific flow coefficients in the ROM reduced the limit of agreement predicting regurgitant volumes from 9.0 ml to 5.7 ml at a mean regurgitant volume of 57 ml
    corecore